Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
J. venom. anim. toxins incl. trop. dis ; 28: e20210116, 2022. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1375812

ABSTRACT

Background: Conopeptides from cone snail venom have aroused great interest related to the discovery of novel bioactive candidates, due to their excellent prospects for the treatment of various health problems such as pain, addiction, psychosis and epilepsy. In order to explore novel biopeptides, we investigated the structure and function of five novel conopeptides isolated from the venom of Conus marmoreus from South China Sea. Methods: C. marmoreus crude venom was prepared, fractionated and purified by HPLC system. The primary sequences of the five novel disulfide-poor conopeptides Mr-1 to Mr-5 were identified by comprehensive analysis of de novo MALDI-TOF tandem mass spectrometry and Edman degradation data. In order to investigate their function, these five conopeptides were synthesized by Fmoc-SPPS chemistry, and their biological effects at several heterologous rat nicotinic acetylcholine receptor (nAChR) subtypes (α1β1δε, α3β2, α3β4, α4β2) were determined by electrophysiological technique. Results: Five novel disulfide-poor conopeptides were identified and named as follows: Mr-1 (DWEYHAHPKPNSFWT), Mr-2 (YPTRAYPSNKFG), Mr-3 (NVIQAPAQSVAPP NTST), Mr-4 [KENVLNKLKSK(L/I)] and Mr-5 [NAVAAAN(L/I)PG(L/I)V]. None of them contains a disulfide bond. The sequences of conopeptides Mr-2 to Mr-5 do not belong to any category of the known disulfide-poor conopeptides. No significant activity against the above nAChR subtypes were observed for the five conopeptides at 100 µM. Conclusion: We purified and structurally characterized five novel disulfide-poor conopeptides from C. marmoreus crude venom and first investigated their nAChR inhibitory effects. This work expanded our knowledge on the structure and function of disulfide-poor conopeptides from this cone snail venom.(AU)


Subject(s)
Animals , Conotoxins/isolation & purification , Disulfides/adverse effects , Mollusk Venoms , Mass Spectrometry
2.
J. venom. anim. toxins incl. trop. dis ; 27: e20210023, 2021. tab, graf, ilus, mapas
Article in English | LILACS, VETINDEX | ID: biblio-1346437

ABSTRACT

Diverse and unique bioactive neurotoxins known as conopeptides or conotoxins are produced by venomous marine cone snails. Currently, these small and stable molecules are of great importance as research tools and platforms for discovering new drugs and therapeutics. Therefore, the characterization of Conus venom is of great significance, especially for poorly studied species. Methods: In this study, we used bioanalytical techniques to determine the venom profile and emphasize the functional composition of conopeptides in Conus taeniatus, a neglected worm-hunting cone snail. Results: The proteomic analysis revealed that 84.0% of the venom proteins were between 500 and 4,000 Da, and 16.0% were > 4,000 Da. In C. taeniatus venom, 234 peptide fragments were identified and classified as conotoxin precursors or non-conotoxin proteins. In this process, 153 conotoxin precursors were identified and matched to 23 conotoxin precursors and hormone superfamilies. Notably, the four conotoxin superfamilies T (22.87%), O1 (17.65%), M (13.1%) and O2 (9.8%) were the most abundant peptides in C. taeniatus venom, accounting for 63.40% of the total conotoxin diversity. On the other hand, 48 non-conotoxin proteins were identified in the venom of C. taeniatus. Moreover, several possibly biologically active peptide matches were identified, and putative applications of the peptides were assigned. Conclusion: Our study showed that the composition of the C. taeniatus-derived proteome is comparable to that of other Conus species and contains an effective mix of toxins, ionic channel inhibitors and antimicrobials. Additionally, it provides a guidepost for identifying novel conopeptides from the venom of C. taeniatus and discovering conopeptides of potential pharmaceutical importance.(AU)


Subject(s)
Animals , Proteome , Conotoxins , Conus Snail , Mollusk Venoms , Neurotoxins , Biological Products
3.
Article in English | LILACS-Express | LILACS, VETINDEX | ID: biblio-1484781

ABSTRACT

Abstract Background: Diverse and unique bioactive neurotoxins known as conopeptides or conotoxins are produced by venomous marine cone snails. Currently, these small and stable molecules are of great importance as research tools and platforms for discovering new drugs and therapeutics. Therefore, the characterization of Conus venom is of great significance, especially for poorly studied species. Methods: In this study, we used bioanalytical techniques to determine the venom profile and emphasize the functional composition of conopeptides in Conus taeniatus, a neglected worm-hunting cone snail. Results: The proteomic analysis revealed that 84.0% of the venom proteins were between 500 and 4,000 Da, and 16.0% were > 4,000 Da. In C. taeniatus venom, 234 peptide fragments were identified and classified as conotoxin precursors or non-conotoxin proteins. In this process, 153 conotoxin precursors were identified and matched to 23 conotoxin precursors and hormone superfamilies. Notably, the four conotoxin superfamilies T (22.87%), O1 (17.65%), M (13.1%) and O2 (9.8%) were the most abundant peptides in C. taeniatus venom, accounting for 63.40% of the total conotoxin diversity. On the other hand, 48 non-conotoxin proteins were identified in the venom of C. taeniatus. Moreover, several possibly biologically active peptide matches were identified, and putative applications of the peptides were assigned. Conclusion: Our study showed that the composition of the C. taeniatus-derived proteome is comparable to that of other Conus species and contains an effective mix of toxins, ionic channel inhibitors and antimicrobials. Additionally, it provides a guidepost for identifying novel conopeptides from the venom of C. taeniatus and discovering conopeptides of potential pharmaceutical importance.

4.
Asian Pacific Journal of Tropical Biomedicine ; (12): 343-352, 2020.
Article in Chinese | WPRIM | ID: wpr-950283

ABSTRACT

Objective: To determine the new M-superfamily conotoxins from molluscivorous snail Conus bandanus in Vietnam. Methods: Conus bandanus venom was fractionated and purified on HPLC system with an analytical reversed-phase C18 column in order to screen small conotoxins. The primary structure of peptide was analyzed by matrix-assisted laser desorption/ionization time of flight tandem mass spectrometry using collision-induced dissociation and confirmed by Edman's degradation method. Results: Five new conotoxins were biochemically characterized from the crude venom of the mollusk-hunting cone snail Conus bandanus, which were collected at Ke Ga reef of the Nha Trang Bay (Vietnam). Each conotoxin had 15 or 16 amino acid residues and shared the same characteristic cysteine framework V as-CC-C-C-CC-. They were termed as Bn3b, Bn3c, Bn3d, Bn3e and Bn3f following the conotoxins nomenclature. Conclusions: The conotoxins Bn3b, Bn3e, and Bn3f are categorized in the mini-M conotoxins of the M1 branch, while conotoxins Bn3c and Bn3d are categorized in the mini-M conotoxins of the M2 branch. The homological analysis reveals that these conotoxins could serve as promising probe compounds for voltage-gated sodium channels.

5.
J. venom. anim. toxins incl. trop. dis ; 26: e20190095, 2020. tab, graf, ilus
Article in English | LILACS, VETINDEX | ID: biblio-1135162

ABSTRACT

Conopeptides are neuropharmacological peptides derived from the venomous salivary glands of cone snails. Among 29 superfamilies based on conserved signal sequences, T-superfamily conotoxins, which belong to the smallest group, include four different frameworks that contain four cysteines denominated I, V, X and XVI. In this work, the primary structure and the cysteine connectivity of novel conotoxin of Conus bandanus were determined by tandem mass spectrometry using collision-induced dissociation. Methods: The venom glands of C. bandanus snails were dissected, pooled, and extracted with 0.1% trifluoroacetic acid in three steps and lyophilized. The venom was fractionated and purified in an HPLC system with an analytical reversed-phase C18 column. The primary peptide structure was analyzed by MALDI TOF MS/MS using collision-induced dissociation and confirmed by Edman's degradation. The peptide's cysteine connectivity was determined by rapid partial reduction-alkylation technique. Results: The novel conotoxin, NGC1C2(I/L)VREC3C4, was firstly derived from de novo sequencing by MS/MS. The presence of isoleucine residues in this conotoxin was confirmed by the Edman degradation method. The conotoxin, denominated Bn5a, belongs to the T1-subfamily of conotoxins. However, the disulfide bonds (C1-C4/C2-C3) of Bn5a were not the same as found in other T1-subfamily conopeptides but shared common connectivities with T2-subfamily conotoxins. The T1-conotoxin of C. bandanus proved the complexity of the disulfide bond pattern of conopeptides. The homological analysis revealed that the novel conotoxin could serve as a valuable probe compound for the human-nervous-system norepinephrine transporter. Conclusion: We identified the first T1-conotoxin, denominated Bn5a, isolated from C. bandanus venom. However, Bn5a conotoxin exhibited unique C1-C4/C2-C3 disulfide connectivity, unlike other T1-conotoxins (C1-C3/C2-C4). The structural and homological analyses herein have evidenced novel conotoxin Bn5a that may require further investigation.(AU)


Subject(s)
Animals , Peptides , Conotoxins , Disulfides , Conus Snail , Salivary Glands
6.
Asian Pacific Journal of Tropical Biomedicine ; (12): 343-352, 2020.
Article in Chinese | WPRIM | ID: wpr-823949

ABSTRACT

Objective: To determine the new M-superfamily conotoxins from molluscivorous snail Conus bandanus in Vietnam. Methods: Conus bandanus venom was fractionated and purified on HPLC system with an analytical reversed-phase C18 column in order to screen small conotoxins. The primary structure of peptide was analyzed by matrix-assisted laser desorption/ionization time of flight tandem mass spectrometry using collision-induced dissociation and confirmed by Edman's degradation method. Results: Five new conotoxins were biochemically characterized from the crude venom of the mollusk-hunting cone snail Conus bandanus, which were collected at Ke Ga reef of the Nha Trang Bay (Vietnam). Each conotoxin had 15 or 16 amino acid residues and shared the same characteristic cysteine framework V as -CC-C-C-CC-. They were termed as Bn3b, Bn3c, Bn3d, Bn3e and Bn3f following the conotoxins nomenclature. Conclusions: The conotoxins Bn3b, Bn3e, and Bn3f are categorized in the mini-M conotoxins of the M1 branch, while conotoxins Bn3c and Bn3d are categorized in the mini-M conotoxins of the M2 branch. The homological analysis reveals that these conotoxins could serve as promising probe compounds for voltage-gated sodium channels.

7.
Chinese Journal of Biotechnology ; (12): 505-512, 2019.
Article in Chinese | WPRIM | ID: wpr-771357

ABSTRACT

Rapid reduction of postprandial blood glucose is very beneficial to diabetics. In order to shorten the onset time of recombinant insulin, the cone snail insulin G1 (cI G1) of Conus geographus was studied. First, the nucleotide sequence of recombinant cone snail proinsulin G1 (cPI G1) was designed and synthesized according to the genes of human proinsulin (hPI) and cPI G1. The codon was optimized according to Escherichia coli (E. coli) codon usage frequency. Then, the plasmid pET22b(+)-cPI G1 was constructed and the recombinant cPI G1 was expressed in E. coli BL21(DE3) host strain. The recombinant cPI G1 was then purified and cleaved specially by trypsin to generate the recombinant cI G1, and its potency is 25.9 IU/mg. Fasting blood glucose test (FBGT) and oral glucose tolerance test (OGTT) suggested that the recombinant cI G1 could rapidly reduce blood glucose in normal and streptozotocin (STZ)-induced diabetic mice, but only for a short duration. This study provides a technical reference for the development of recombinant fast-acting insulin.


Subject(s)
Animals , Humans , Mice , Conus Snail , Diabetes Mellitus, Experimental , Escherichia coli , Hypoglycemic Agents , Insulin
8.
Ciênc. rural ; 46(1): 150-156, jan. 2016. graf
Article in English | LILACS | ID: lil-766991

ABSTRACT

This study aimed to investigate the neuroprotective effect of ω-conotoxin MVIIA (MVIIA) intralesional application in rats submitted to spinal cord injury. Male Wistar rats, weighing 300g±23.4, were distributed in five groups: negative control (SHAM), placebo (PLA), 5μM MVIIA, 10μM MVIIA and 20μM MVIIA MVIIA. After laminectomy of the 12th thoracic vertebra (SHAM), the PLA, 5μM MVIIA, 10μM MVIIA and 20μM MVIIA groups were subjected to acute compressive spinal cord trauma for five minutes, and then five minutes later, the animals received specific treatment in a standard total volume of 2µL, by intralesional route, using sterile PBS as placebo. Locomotor activity was assayed using Basso Beattie Bresnahan (BBB) scale to show the patterning of SCI. With 48 hours of injury, the animals were euthanized, the liquor sample was collected in atlantooccipital space, and also the spinal segment, including the epicenter and caudal region to injury. Assays were performed for mitochondrial viability, serum glutamate, production of reactive oxygen species (ROS) and lipid peroxidation (LP) were performed. The study design was randomized and the data submitted to ANOVA and comparison of means by SNK test, and data from BBB scale were evaluated using Kruskal-Wallis test (P<0.05). There was no significant difference between groups in BBB scores. The MVIIA did not promote decrease in the levels of glutamate, ROS, LP, and did not preserve the mitochondria in the intralesional application five minutes after spinal cord injury in rats.


Objetivou-se investigar o efeito neuroprotetor da aplicação intralesional da MVIIA em ratos submetidos ao trauma medular. Foram utilizados ratos Wistar, machos, com peso entre 300g±23.4, distribuídos em cinco grupos: controle negativo (SHAM), placebo (PLA), 5µM MVIIA, 10µM MVIIA e 20µM MVIIA. Após a laminectomia da vértebra torácica 12 (SHAM), os grupos PLA, 5µM MVIIA, 10µM MVIIA e 20µM MVIIA foram submetidos ao trauma medular agudo compressivo por cinco minutos e, cinco minutos após o trauma, receberam o tratamento específico em volume total padrão de 2µL, pela via intralesional, sendo utilizado como placebo o PBS estéril. A atividade locomotora foi avaliada pela escala proposta por Basso Beattie Bresnahan (BBB), com intuito de mostrar a padronização do trauma medular. Com 48 horas do trauma, os animais foram submetidos à eutanásia, coletou-se amostra do líquor no espaço atlantooccipital e um segmento medular, incluindo o epicentro e região caudal à lesão. Foram realizados ensaios de viabilidade mitocondrial, dosagem de glutamato, produção de espécies reativas de oxigênio (ERO) e peroxidação lipídica (PL). O delineamento do estudo foi inteiramente casualizado e os dados submetidos ao ANOVA, com comparação de médias pelo teste de SNK e os dados do teste BBB foram comparados utilizando o teste Kruskal-Wallis (P<0.05). Em relação aos escores do BBB, não houve diferença entre os grupos. A MVIIA não promoveu a diminuição dos níveis do glutamato, ERO, PL e não preservou a mitocôndria na aplicação intralesional, cinco minutos após o trauma medular em ratos.

9.
J. venom. anim. toxins incl. trop. dis ; 22: [1-15], 2016. ilus, tab
Article in English | LILACS, VETINDEX | ID: biblio-1484662

ABSTRACT

During evolution, nature has embraced different strategies for species to survive. One strategy, applied by predators as diverse as snakes, scorpions, sea anemones and cone snails, is using venom to immobilize or kill a prey. This venom offers a unique and extensive source of chemical diversity as it is driven by the evolutionary pressure to improve prey capture and/or to protect their species. Cone snail venom is an example of the remarkable diversity in pharmacologically active small peptides that venoms can consist of. These venom peptides, called conopeptides, are classified into two main groups based on the number of cysteine residues, namely disulfide-rich and disulfide-poor conopeptides. Since disulfide-poor conotoxins are minor components of this venom cocktail, the number of identified peptides and the characterization of these peptides is far outclassed by its cysteine-rich equivalents. This review provides an overview of 12 families of disulfide-poor peptides identified to date as well as the state of affairs.


Subject(s)
Animals , Disulfides/analysis , Disulfides/classification , Oligopeptides/analysis , Oligopeptides/classification , Oligopeptides/chemical synthesis , Pharmacology/trends
10.
J. venom. anim. toxins incl. trop. dis ; 22: 30, 2016. tab, graf, ilus
Article in English | LILACS, VETINDEX | ID: biblio-954780

ABSTRACT

During evolution, nature has embraced different strategies for species to survive. One strategy, applied by predators as diverse as snakes, scorpions, sea anemones and cone snails, is using venom to immobilize or kill a prey. This venom offers a unique and extensive source of chemical diversity as it is driven by the evolutionary pressure to improve prey capture and/or to protect their species. Cone snail venom is an example of the remarkable diversity in pharmacologically active small peptides that venoms can consist of. These venom peptides, called conopeptides, are classified into two main groups based on the number of cysteine residues, namely disulfide-rich and disulfide-poor conopeptides. Since disulfide-poor conotoxins are minor components of this venom cocktail, the number of identified peptides and the characterization of these peptides is far outclassed by its cysteine-rich equivalents. This review provides an overview of 12 families of disulfide-poor peptides identified to date as well as the state of affairs.(AU)


Subject(s)
Peptides , Snails , Conotoxins , Mollusk Venoms
11.
J. venom. anim. toxins incl. trop. dis ; 20: 1-6, 04/02/2014. tab, graf, ilus
Article in English | LILACS, VETINDEX | ID: biblio-1484561

ABSTRACT

Calcium channel blockers such as conotoxins have shown a great potential to reduce brain and spinal cord injury. MVIIC neuroprotective effects analyzed in in vitro models of brain and spinal cord ischemia suggest a potential role of this toxin in preventing injury after spinal cord trauma. However, previous clinical studies with MVIIC demonstrated that clinical side effects might limit the usefulness of this drug and there is no research on its systemic effects. Therefore, the present study aimed to investigate the potential toxic effects of MVIIC on organs and to evaluate clinical and blood profiles of rats submitted to spinal cord injury and treated with this marine toxin. Rats were treated with placebo or MVIIC (at doses of 15, 30, 60 or 120 pmol) intralesionally following spinal cord injury. Seven days after the toxin administration, kidney, brain, lung, heart, liver, adrenal, muscles, pancreas, spleen, stomach, and intestine were histopathologically investigated. In addition, blood samples collected from the rats were tested for any hematologic or biochemical changes.


Subject(s)
Animals , Rats , Calcium Channel Blockers/analysis , Conotoxins/analysis , Cerebrum/anatomy & histology , Wounds and Injuries , Bone Marrow , Rats
12.
Article in English | LILACS | ID: lil-724671

ABSTRACT

Calcium channel blockers such as conotoxins have shown a great potential to reduce brain and spinal cord injury. MVIIC neuroprotective effects analyzed in in vitro models of brain and spinal cord ischemia suggest a potential role of this toxin in preventing injury after spinal cord trauma. However, previous clinical studies with MVIIC demonstrated that clinical side effects might limit the usefulness of this drug and there is no research on its systemic effects. Therefore, the present study aimed to investigate the potential toxic effects of MVIIC on organs and to evaluate clinical and blood profiles of rats submitted to spinal cord injury and treated with this marine toxin. Rats were treated with placebo or MVIIC (at doses of 15, 30, 60 or 120 pmol) intralesionally following spinal cord injury. Seven days after the toxin administration, kidney, brain, lung, heart, liver, adrenal, muscles, pancreas, spleen, stomach, and intestine were histopathologically investigated. In addition, blood samples collected from the rats were tested for any hematologic or biochemical changes.


Subject(s)
Animals , Rats , Bone Marrow , Calcium Channel Blockers/analysis , Cerebrum/anatomy & histology , Conotoxins/analysis , Wounds and Injuries , Rats
SELECTION OF CITATIONS
SEARCH DETAIL